首页

搜索 繁体

第100章(1 / 2)

“怎么削减呢?抽象,分类,一层又一层创造新概念,每个概念都把概率计算模糊化,把纯粹的逻辑和计算问题变成教条、经验和价值观。我们把无数种估值计算抽象成‘实地’和‘外势’,把无数种小局面分类成‘好形’和‘恶形’。阿尔法狗亿万次推演的得出的下一手,我们用几个字的模糊教条代替,比如‘逢危需弃’。我们用‘美感’‘虚实’这种非逻辑语言描述围棋,因为我们说不清楚、算不过来。这些低能耗工具真的非常管用,李世石还赢过狗一盘!2016313,人脑智能在棋盘上最后的辉煌:78手挖制胜。这盘之后阿尔法狗再无败绩。“鬼魅”“凌厉”“天外飞仙”是当时其他人类对白78的描述。78手实际上是误算,然而引发了ai的bug“这一套玩法听起来很矬。下棋我们是永远下不过ai了。但是阿尔法狗只会下棋,其它什么也不会。东亚人说围棋是人类智能的桂冠,这是自吹自擂。下围棋是个非常简单的智能行为,因为它规则非常简单,因素非常单纯。我们觉得它难是因为19路棋盘太大了,纯属自虐设计。从13路涨到19路,计算量指数暴增,我们又非要玩,就必须搞出这么多复杂的概念来简化它。而狗,因为有一把蛮力,简简单单就把它玩好了。从信息处理和概率学的角度来看,医生诊断病人,或者纯粹靠观察判断老婆有没有偷情,都比下围棋复杂亿万倍。这些事情,我们很多人都能做得很好——”下面哄堂大笑,都在互相问图海川有没有老婆。“——但是阿尔法狗就不行。绝对不行。作为一个ai,它非常原始。而我们的大脑是一部通用智能机器,它用它那一套工具和架构,可以对付任何事,解决任何智能问题。我看见同行们在打哈欠了。因为我刚才讲的都是ai研究中的入门常识。为你们的领导着想,请再忍耐我一会儿。“谁都知道大脑是唯一的通用智能机器。那我们为什么不造个人工大脑呢?这东西可不好造。因为它慢,为了解决问题就进化得极其复杂。上个世纪后半段,有些ai研究者真的尝试过。一个小程序或者一个硬件单元代表一个神经元,让我们弄一大堆胡乱连起来,就叫神经网络!用海量数据训练它,看看它会不会变成大脑?“当然没有。这些先辈,在业界叫做连接主义者。他们几十年没做出什么成绩,在投资者当中名声臭了。后辈为了出成绩赶紧换方向,ai技术的玩法从连接变成了概率。阿尔法狗就是概率学ai的平型关战役,虽然体量很小没搞定多少鬼子,却吹响了二十一世纪人工智能大进军的号角。因为它证明:我们只要操起这个武器去打,总有能打赢的时候。”日本代表们听译员解释之后都在笑。“为什么我会坐下来,从头考虑这些常识问题?因为我感觉概率学已经玩不动了。我的偶像杨立昆,在2017年就说他已经准备好放弃概率学。那时我还是个无知少年,觉得他在无病呻吟。到2029年,我比他更绝望。不是说概率学ai不行,它很厉害。谷歌透镜、人脸识别、自动驾驶、智能辅助设计、诊断系统、智能测谎、无人机刺杀、智能战略防御,不久之前你们还用得很开心。这些都是概率学ai的成果。当代流行的ai中,最差劲的是智能教育系统,教书的ai假装教,上课的学生假装学。最可笑的是ai明星,猴子穿个龙袍就敢去演皇帝。这两个失败都情有可原:在我看来,当个好老师是人类最高智力成就,而表演别人是人类最狡诈的智能行为。这些短板还不算严重。真正严重的是:概率学ai看来永远达不到我的目标——通用人工智能。(注:杨立昆,即yann lecun,美国人工智能学家,深度学习的创始人之一,被誉为“卷积网络之父”。)

“于是我反复思考那个唯一的通用智能,越想越气愤。它凭什么那么简单却那么厉害啊?”国务卿不举手直接站起来:“简单?你不是刚说它极其复杂、无法制造吗?”“它长得极其复杂,运作的原理却非常简单。跟概率学ai正好相反。我们用概率学ai解决一个问题,构造框架简单明了,但具体实现要做非常复杂的设计、计算和测试。其中有些部分纯粹靠反复碰运气,碰到正确答案为止。为什么正确我们都不知道。而且无法移植,能解决人脸识别的ai设计遇到翻译问题马上废掉,几乎是从头做起。也就是说,我们没有一个关于智能的整体解决方案,都是具体问题各自为战。大脑是一个明摆着的整体解决方案。大脑神经元不懂任何算术,更别说概率学,执行的操作就那么两下。组成一个庞大的网络却能解决一切问题。”“哦?我听过的科学家,都说大脑的运作原理无比复杂。你却说简单?那么简单的话,能分享一下吗?”“刚才我讲人怎么下棋的时候,已经说过了:记录,模式抽象,分类,层层创造新概念,把记下的模式用来预测。完了。”国务卿一时摸不着头脑。图海川挥手让他坐下。戈德曼坐在旁边不动如山,根本当他不存在。“同行们注意!下面是你们不知道的,或者不愿意承认的。连接主义者很不幸。他们的直觉其实是对的,但生活在上个世纪,生物学和认知神经学都太落后,根本不懂大脑。我们先来看看大脑到底怎么工作。“我们的计算机程序,数据结构非常复杂,大学时数据结构基

热门小说推荐

最近入库小说